

Eletrônica e Arduino

Introdução

Hackerspace em Porto Alegre

Apoio:

Súmula

1. Revisão de circuitos elétricos e eletrônica.

2. Arduino

- a. Explicações gerais e o Arduino Uno
- b. Apresentação e explicação sobre os componentes do kit.
- C. Ambiente de desenvolvimento (software)
- d. Projeto exemplo (blink)

3. Hands on

- a. Comunicação serial
- b. Leitura de entrada digital
- C. Leitura de entrada analógica

4. Faça seu projeto

Circuito elétrico

Um circuito elétrico é formado quando um caminho condutivo é criado para permitir o movimento de elétrons livres.

Tensão, Corrente e Resistência

	Símbolo	Unidade	Abreviação
Corrente	I	Ampere	Α
Tensão	E ou V	Volt	V
Resistência	R	Ohm	Ω

$$R = \frac{E}{I}$$

$$I = \frac{E}{R}$$

$$E = IR$$

Lei de Ohm

	Símbolo	Unidade	Abreviação		
Corrente	1	Ampere	Α		
Tensão	E ou V	Volt	V		
Resistência	R	Ohm	Ω		
Potência	Р	Watts	W		

Circuitos em série

$$\mathbf{E}_{\mathsf{R}1} = \mathbf{I}_{\mathsf{R}1} \; \mathbf{R}_1$$

$$\mathbf{E}_{\mathsf{R}2} = \mathbf{I}_{\mathsf{R}2} \; \mathbf{R}_2$$

$$\mathbf{E}_{\mathrm{R3}} = \mathbf{1}_{\mathrm{R3}} \; \mathbf{R}_{\mathrm{3}}$$

$$E_{R1} = (500 \,\mu\text{A})(3 \,\text{k}\Omega) = 1.5 \,\text{V}$$

$$E_{R2} = (500 \,\mu\text{A})(10 \,\text{k}\Omega) = 5 \,\text{V}$$

$$E_{R3} = (500 \,\mu\text{A})(5 \,\text{k}\Omega) = 2.5 \,\text{V}$$

Circuitos em paralelo

$$l_{R1} = \frac{E_{R1}}{R_1}$$
 $l_{R2} = \frac{E_{R2}}{R_2}$ $l_{R3} = \frac{E_{R3}}{R_3}$

$$1_{R3} = \frac{E_{R3}}{R_3}$$

$$l_{R1} = \frac{9 \text{ V}}{10 \text{ kO}} = 0.9 \text{ mA}$$

$$I_{R2} = \frac{9 \text{ V}}{2 \text{ k}\Omega} = 4.5 \text{ mA}$$

$$l_{R3} = \frac{9 \text{ V}}{1 \text{ kO}} = 9 \text{ mA}$$

1		2	3	_4
+	l _T	<u> </u>	↓	•
9 V =	\mathbf{I}_{R}	$\leq R_1$	$ \leq R_2$	\geqslant R_3
-	$\frac{l_T}{}$	[10 kΩ	$\int_{0}^{\infty} 2 k\Omega$	1 kΩ
8		7	6	 5

	R_1	R_2	R_3	Total
Ε	9	9	9	9
I	0.9m	4.5m	9m	14.4m
R	10k	2k	1k	

Rule of parallel circuits
$$I_{total} = I_1 + I_2 + I_3$$

Volts

Amps

Ohms

Circuitos em paralelo

$$l_{R1} = \frac{E_{R1}}{R_1}$$
 $l_{R2} = \frac{E_{R2}}{R_2}$ l_{R3}

$$l_{R1} = \frac{9 \text{ V}}{10 \text{ k}\Omega} = 0.9 \text{ mA}$$

$$I_{R2} = \frac{9 \text{ V}}{2 \text{ k}\Omega} = 4.5 \text{ mA}$$

$$l_{R3} = \frac{9 \text{ V}}{1 \text{ k}\Omega} = 9 \text{ mA}$$

I _{B2} = -	E_{R3}
LR3 —	R ₃

	R_1	R_2	R_3	Total	
Ε	9	9	9	9	Volts
I	0.9m	4.5m	9m	14.4m	Amps
R	10k	2k	1k	625	Ohms

$$R_{total} = \frac{E_{total}}{I_{total}} = \frac{9 \text{ V}}{14.4 \text{ mA}} = 625 \Omega$$
Chm's Law

Circuitos mistos

AC/DC ou CA/CC

ALTERNATING CURRENT (AC)

Kit

- Arduino Uno
- 7 resistores
- 3 leds (verde, amarelo, vermelho)
- buzzer
- sensor temperatura
- sensor de luz
- sensor magnético
- 2 botões
- potenciômetro
- matriz de contatos
- fios jumper
- cabo usb

Arduino Uno

- 14 pinos digitais de I/O (pinos de 0-13)
 - Podem ser programados como entrada ou saída de acordo com o que for especificado no sketch.
- 6 pinos de entrada analógica (pinos 0-5)
 Recebem leituras de tensão de um sensor e as convertem em um numero entre 0 e 1023.
- 6 pinos de saída analógica (pinos 3,5,6,9,10 e 11)

Na verdade são seis pinos digitais reprogramados para serem usados como saídas analógicas

Código de Cores

A extremidade com mais faixas deve apontar para a esquerda

Cor	1ª Faixa	2ª Faixa	3ª Faixa	Multiplicador	Tolerância
Preto	0	0	0	x 1 Ω	
Marrom	1	1	1	x 10 Ω	+/- 1%
Vermelho	2	2	2	x 100 Ω	+/- 2%
Laranja	3	3	3	x 1K Ω	
Amarelo	4	4	4	x 10K Ω	
Verde	5	5	5	x 100K Ω	+/5%
Azul	6	6	6	x 1M Ω	+/25%
Violeta	7	7	7	x 10M Ω	+/1%
Cinza	8	8	8		+/05%
Branco	9	9	9		
Dourado				χ.1 Ω	+/- 5%
Prateado				χ .01 Ω	+/- 10%

Valores Comerciais de Resistores

	5% Resistores de Filme de Carbono														
	Tabela de Valores Comerciais														
1,0	Ω	10	Ω	100	Ω	1	ΚΩ	10	ΚΩ	100	ΚΩ	1	МΩ	10	МΩ
1,1	Ω	11	Ω	110	Ω	1,1	ΚΩ	11	ΚΩ	110	ΚΩ	1,1	МΩ	15	МΩ
1,2	Ω	12	Ω	120	Ω	1,2	ΚΩ	12	ΚΩ	120	ΚΩ	1,2	МΩ	22	МΩ
1,3	Ω	13	Ω	130	Ω	1,3	ΚΩ	13	ΚΩ	130	ΚΩ	1,3	МΩ		
1,5	Ω	15	Ω	150	Ω	1,5	ΚΩ	15	ΚΩ	150	ΚΩ	1,5	МΩ		
1,6	Ω	16	Ω	160	Ω	1,6	ΚΩ	16	ΚΩ	160	ΚΩ	1,6	МΩ		
1,8	Ω	18	Ω	180	Ω	1,8	ΚΩ	18	ΚΩ	180	ΚΩ	1,8	МΩ		
2,0	Ω	20	Ω	200	Ω	2	ΚΩ	20	ΚΩ	200	ΚΩ	2	МΩ		
2,2	Ω	22	Ω	220	Ω	2,2	ΚΩ	22	ΚΩ	220	ΚΩ	2,2	МΩ		
2,4	Ω	24	Ω	240	Ω	2,4	ΚΩ	24	ΚΩ	240	ΚΩ	2,4	МΩ		
2,7	Ω	27	Ω	270	Ω	2,7	ΚΩ	27	ΚΩ	270	ΚΩ	2,7	МΩ		
3,0	Ω	30	Ω	300	Ω	3	ΚΩ	30	ΚΩ	300	ΚΩ	3	МΩ		
3,3	Ω	33	Ω	330	Ω	3,3	ΚΩ	33	ΚΩ	330	ΚΩ	3,3	МΩ		
3,6	Ω	36	Ω	360	Ω	3,6	ΚΩ	36	ΚΩ	360	ΚΩ	3,6	МΩ		
3,9	Ω	39	Ω	390	Ω	3,9	ΚΩ	39	ΚΩ	390	ΚΩ	3,9	МΩ		
4,3	Ω	43	Ω	430	Ω	4,3	ΚΩ	43	ΚΩ	430	ΚΩ	4,3	МΩ		
4,7	Ω	47	Ω	470	Ω	4,7	ΚΩ	47	ΚΩ	470	ΚΩ	4,7	МΩ		
5,1	Ω	51	Ω	510	Ω	5,1	ΚΩ	51	ΚΩ	510	ΚΩ	5,1	МΩ		
5,6	Ω	56	Ω	560	Ω	5,6	ΚΩ	56	ΚΩ	560	ΚΩ	5,6	МΩ		
6,2	Ω	62	Ω	620	Ω	6,2	ΚΩ	62	ΚΩ	620	ΚΩ	6,2	МΩ		
6,8	Ω	68	Ω	680	Ω	6,8	ΚΩ	68	ΚΩ	680	ΚΩ	6,8	МΩ		
7,5	Ω	75	Ω	750	Ω	7,5	ΚΩ	75	ΚΩ	750	ΚΩ	7,5	МΩ		
8,2	Ω	82	Ω	820	Ω	8,2	ΚΩ	82	ΚΩ	820	ΚΩ	8,2	МΩ		
9,1	Ω	91	Ω	910	Ω	9,1	ΚΩ	91	ΚΩ	910	ΚΩ	9,1	МΩ		

LED

Diodo Emissor de Luz

Resistor Limitador

Côr	Queda de Tensão	Corrente Máxima
Vermelho	1.8 V	0.02 A
Verde	2.1 V	0.02 A
Amarelo	2.0 V	0.015 A
Laranja	2.0 V	0.02 A
Azul	3.1 V	0.02 A
Branco	3.1 V a 4.0V (depende do fabricante)	0.02 A
Infra- vermelho	1.1 V	0.02 A

V - tensão de alimentação (V)

R - resistor redutor (Ohms)

I - corrente no led (A)

$$R = \frac{V - 1.6}{I}$$

Valores típicos de 1: 5 < 1 < 50mA

LM 35-Sensor de Temperatura

Buzzer

Botão

Sensor de luz

Potenciômetro

Matriz de Contatos

Ambiente de desenvolvimento

- http://arduino.cc/en/Main/Software
- Escrever código e fazer upload para a placa.
- Linux :-)
- Mac OS X e Windows :-(
- Escrito em Java, baseado em Processing, avr-gcc, e outros softwares de código aberto.

Ambiente de Desenvolvimento

Verify: Verifica se existem erros de sintaxe nó código.

Upload: Compila o código e envia-o para a placa.

New, **Open** e **Save**: Cria, abre e salva novos sketches (Softwares escritos usando Arduino).

Extensão: .ino

Serial Monitor: Mostra os dados seriais enviados da placa de Arduino. Possibilidade tambem enviar dados seriais para a placa.

Área de mensagem

Analisando o Blink

```
Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
 This example code is in the public domain.
 */
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13:
// the setup routine runs once when you press reset:
void setup() {
  // initialize the digital pin as an output.
  pinMode(led, OUTPUT);
// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
  delay(1000);
                           // wait for a second
  digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
  delay(1000);
                         // wait for a second
```

O Que Faz Este Programa

- Transforma o pino 13 em uma saida.
- Entra em um loop.
- Acende o LED conectado ao pino 13.
- Aguarda um segundo.
- Apaga o LED conectado ao pino 13.
- Aguarda um segundo.
- Retorna ao inicio do loop.

Comunicação Serial

Escrever na saída serial.

```
* Hello World!
* This is the Hello World! for Arduino.
* It shows how to send data to the computer
                        // run once, when the sketch starts
void setup()
 Serial.begin(9600);
                        // set up Serial library at 9600 bps
 Serial.println("Hello world!"); // prints hello with ending line break
void loop()
                         // run over and over again
                     // do nothing!
```

Sinal Analógico vs Digital

Entrada e Saída Digital e Serial Monitor

StateChangeDetection

Entrada e Saída Analógica e Monitor Serial

AnalogInOutSerial

Sensor de Temperatura e Serial Monitor

http://blog.webtronico.com/?p=57

Lendo e Escrevendo Através do Serial Monitor

Exercício final

 Pesquise e apresente um projeto usando os links abaixo ou outros de sua preferência.

http://arduino.cc/en/Tutorial/HomePage

http://playground.arduino.cc/

Informações oficiais

Fundamentos: http://arduino.cc/en/Tutorial/Foundations

Exemplos (do básico ao avançado): http://arduino.cc/en/Tutorial/HomePage

Hacks (Extendendo o arduino): http://arduino.cc/en/Hacking/HomePage

Mais...

http://www.ladyada.net/learn/arduino/index.html

http://www.adafruit.com/tutorials

http://www.sparkfun.com/tutorials

http://makezine.com/arduino/

http://www.instructables.com/tag/type-id/category-technology/channel-arduino/